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Abstract

The characteristics of influenza seasons vary substantially from year to year, posing challenges for 

public health preparation and response. Influenza forecasting is used to inform seasonal outbreak 

response, which can in turn potentially reduce the impact of an epidemic. The United States 

Centers for Disease Control and Prevention, in collaboration with external researchers, has run 

an annual prospective influenza forecasting exercise, known as the FluSight challenge. Uniting 

theoretical results from the forecasting literature with domain-specific forecasts from influenza 

outbreaks, we applied parametric forecast combination methods that simultaneously optimize 

model weights and calibrate the ensemble via a beta transformation and made adjustments to 

the methods to reduce their complexity. We used the beta-transformed linear pool, the finite beta 

mixture model, and their equal weight adaptations to produce ensemble forecasts retrospectively 

for the 2016/2017, 2017/2018, 2018/2019 influenza seasons in the U.S. We compared their 

performance to methods that were used in the FluSight challenge to produce the FluSight Network 

ensemble, namely the equally weighted linear pool and the linear pool. Ensemble forecasts 

produced from methods with a beta transformation were shown to outperform those from the 

equally weighted linear pool and the linear pool for all week-ahead targets across in the test 

seasons based on average log scores. We observed improvements in overall accuracy despite the 

beta-transformed linear pool or beta mixture methods’ modest under-prediction across all targets 

and seasons. Combination techniques that explicitly adjust for known calibration issues in linear 

pooling should be considered to improve probabilistic scores in outbreak settings.
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SUPPORTING INFORMATION
The following supporting information is available as part of the online article:
Individual Forecasting Model Information and Additional Results. This supporting information contains sections 1–3 including 
individual forecasting model information and additional results of the application.

0The FluSight Challenge uses a slightly different binned probability format where the ith bin is defined as ℓi , ui
23; this detail does 

not have a practical impact on the set up because the influenza-like-illness measure is continuous.
0Since the target variables are discretized in this application, we adapt Definition 2.5 in Gneiting and Raftery28 by sampling a 
uniformly distributed PIT value between F li  and F ui  where li, ui  is the bin containing the observed value.
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1 | INTRODUCTION

Seasonal influenza outbreaks pose public health challenges and cause a large morbidity 

and mortality burden worldwide. The United States Centers for Disease Control and 

Prevention (CDC) estimates there were 35.5 million cases of influenza, 490,600 influenza-

related hospitalizations, and 34,200 deaths from influenza during the 2018–2019 influenza 

season in the U.S.1. Influenza forecasting has become integral to public health decision 

making2. A forecasting model uses data to make projections of the future trajectory of 

an infectious disease target, such as cases, hospitalizations and deaths, and can provide 

uncertainty measures of its predictions. Thus, forecasting models are a powerful tool for 

public health officials to improve seasonal outbreak preparedness and response, which can 

in turn potentially reduce the burden of seasonal influenza. The CDC’s establishment of the 

Center for Forecasting and Outbreak Analytics in August of 20213 highlights a critical need 

to advance the use of infectious disease forecasting and modeling.

To provide public health officials real-time, prospective information about the future 

trajectory of seasonal influenza, the CDC, in collaboration with external researchers, started 

an annual prospective influenza forecasting exercise in the U.S., known as the FluSight 

challenge, in 2013. This exercise has been conducted with the goal of improving forecast 

accuracy and the integration of forecasts with real-time public health decision making. 

Multiple academic and non-academic groups submit weekly forecasts to the FluSight 

challenge. A submission typically contains probabilistic and point forecasts for seven targets 

in each of the 10 Health and Human Services (HHS) regions in the U.S. as well as at 

the national level. In this manuscript, we focus on the probabilistic forecasts, in which a 

predictive distribution is specified for the outcome of interest. All forecast targets are based 

on the weighted percentage of outpatient visits for influenza-like illness (wILI) collected 

through the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet), weighted 

by state populations.

Constructing a single ensemble forecast that combines the forecasts from multiple individual 

models has advantages. An ensemble forecast unifies signals from many models into a 

single forecast, making it easier for stakeholders to understand. In addition, ensemble 

forecasts have been shown to consistently achieve a high degree of accuracy and often 

outperform individual forecasts of infectious disease targets4,5,6,7,8,9,10,11,12. A subset of 

teams participating in the FluSight challenge has produced a collaborative multi-model 

ensemble, the FluSight Network ensemble, using stacked generalization —in particular, the 

FluSight Network ensemble is calculated as a linear combination of the individual forecasts.

Despite the success of linear combination methods such as the one used to produce the 

FluSight Network ensemble, their forecasts lack calibration13,14. Gneiting and Ranjan14 

proved that the linear aggregation increases the dispersion of the combined predictive 

distribution and therefore may result in overdispersed ensemble forecasts even when the 

individual forecasts are well-calibrated. More generally, a simple linear combination of 

individual forecasts may produce miscalibrated ensemble forecasts unless their calibration is 

adjusted for.
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Previous work has presented parametric and nonparametric approaches to combining and 

calibrating ensemble forecasts. The beta-transformed linear pool is a combination formula 

that calibrates the combined predictive distribution by overlaying the linear pool with a 

beta transformation15,14. An extension to the beta-transformed linear pool using a Bayesian 

nonparametric approach to estimate infinite beta mixture models was proposed16. This 

method achieves a theoretically stronger result of probabilistic calibration compared to 

the beta-transformed linear pool by extending the flexibility of the combination function. 

Kuleshov and Deshpande17 introduced calibrated risk minimization as a principle that 

maximizes sharpness subject to calibration by adding calibration loss as a constraint in 

the loss function. Rumack, Tibshirani and Rosenfeld18 presented a post-processing method 

called the recalibration ensemble that combines and calibrates forecasts in separate steps and 

applied this method to recalibrating epidemic forecasts.

In practice, there is merit in selecting parsimonious models and combination methods 

with computationally efficient estimation19,20,21. The optimal degree of flexibility and 

computational complexity of combination methods often vary for different applications. 

Baran and Lerch20 compare the performance of multiple forecast combination methods and 

assesses the degree of flexibility combination methods needed to yield the best practical 

results for post-processing applications in forecasting wind speed and precipitation. In 

influenza probabilistic forecasting, Ray and Reich22 study a range of individual model 

weighing schemes with different levels of complexity in generating ensemble forecasts via 

the feature-weighted ensemble approach that combines aspects of linear pooling or stacking 

and gradient boosting. In both of these studies, the methods with an intermediate level of 

flexibility yielded better predictive performances in their respective applications.

This work aims to add to the growing field of infectious disease probabilistic forecasting 

by investigating the accuracy and probabilistic calibration of ensemble forecasts produced 

from combination methods that combine and calibrate simultaneously while not having 

any knowledge of the underlying model structure of the individual models or the ability 

to reproduce their forecasts in the U.S. seasonal influenza setting. Using 27 individual 

models from the FluSight network, we apply the linear pool, beta-transformed linear pool, 

and the finite beta mixture approach to combine predictive distributions. We also adapt 

the beta-transformed linear pool and the finite beta mixture approach by fixing individual 

model weights to be equal to investigate whether these more parsimonious approaches 

are sufficiently flexible for producing accurate and well-calibrated ensemble forecasts. We 

modify estimation approaches of the methods with beta transformation to accommodate the 

binned probability distribution representation used in the FluSight challenge23.

Section 2 reviews the CDC influenza data, forecast targets, and forecast combination 

methods. Section 3 describes the application of the combination methods in seasonal 

influenza forecasting and presents results. Section 4 contains discussions of results in the 

context of related work, real-time forecasting operations, and data-driven public health 

decision making.
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2 | METHODS

2.1 | Influenza Data

The U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet) publishes the 

weekly percentage of outpatient doctor’s office visits due to influenza-like illness weighted 

by state populations (wILI). ILINet is a syndromic surveillance system that includes more 

than 3,000 providers24. The CDC Influenza Division reports weekly estimates of wILI for 

the United States and for the 10 Health and Human Services (HHS) regions (Figure 1).

2.2 | Forecast targets

Forecasts submitted to the CDC FluSight challenge typically consists of three seasonal 

targets and four short-term targets. We produce ensemble forecasts of short-term 1–4 week 

ahead wILI for all locations from the 2016/2017 to 2018/2019 influenza season in this study. 

We do not include forecasts of seasonal targets, such as the peak week, peak incidence, and 

seasonal onset, due to the lack of importance of probabilistic forecasts after those events 

have been observed in a particular season.

2.3 | Forecast combination methods

Let f1, …, fM and F1, …, FM be predictive probability density functions (PDFs) and 

cumulative distribution functions (CDFs), respectively, for a real-valued forecast target, y, 

from M individual models. The combination methods described in this section include the 

linear pool as a baseline method and the beta-transformed linear pool and finite beta mixture 

combination as the methods that combine and calibrate forecasts.

2.3.1 | Linear pool (LP and EW-LP)—The linear pool is a mixture model with a 

predictive density

fLP y = ∑
m = 1

M
ωmfm y , (1)

where ωm is a nonnegative weight for the mth individual model and ∑m = 1
M ωm = 1. The equally 

weighted linear pool (EW-LP) is a special case of the LP with the weights fixed to ωm = 1
M .

2.3.2 | Beta-transformed linear pool (BLP and EW-BLP)—Gneiting and Ranjan14 

demonstrate that the LP produces forecasts that lack calibration when the individual 

forecasts are well-calibrated and propose a flexible alternative approach, the beta-

transformed linear pool (BLP), which has a predictive CDF defined by

FBLP y = Bα, β ∑
m = 1

M
ωmFm y , (2)

where Bα, β denotes the CDF of the beta distribution with the parameters α, β > 0, ωm is 

a nonnegative weight for the mth individual model weight and ∑m = 1
M ωm = 1. To find the 

predictive PDF of the BLP we can differentiate the above CDF, finding
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fBLP y = ∑
m = 1

M
ωmfm y bα, β ∑

m = 1

M
ωmFm y (3)

where bα, β is the PDF of the beta distribution. The LP is a special case of the BLP 

when α = β = 1. The equal weight variation of this method is the equally weighted beta-

transformed linear pool (EW-BLP), which is a special case of the BLP with fixed weights 

ωm = 1
M . Figure 2 demonstrates how the BLP’s beta transformation operates on the LP’s 

predictive CDF.

2.3.3 | Finite beta mixture combination (BMCK and EW − BMCK)—A 

Bayesian approach is used to extend the BLP to finite and infinite beta mixtures for 

combining and calibrating predictive distributions16. Baran and Lerch20 note the high 

computational costs of the estimating this approach. Due to the computational burden of 

this Bayesian approach, we choose to employ a frequentist approach to estimate a finite beta 

mixture model

FBMCK y = ∑
k = 1

K
θkBαk, βk ∑

m = 1

M
ωkmFm y , (4)

where K is the number of beta components, θk is a beta mixture weight for the kth beta 

component, Bαk, βk denotes the CDF of the beta distribution with the parameters αk, βk > 0, and 

ωk = ωk1, …, ωkM  comprises the individual model weights specific to each beta component. 

Differentiating the CDF, the predictive density of the BMCK is

fBMCK y = ∑
k = 1

K
θk ∑

m = 1

M
ωkmfm y bαk, βk ∑

m = 1

M
ωkmFm y . (5)

The equally weighted variation of the finite beta mixture combination approach 

(EW − BMCK) is a special case of the BMCK with ωk = 1
M , …, 1

M  With K = 1, the BMCK

and the EW − BMCK become the BLP and the EW-BLP, respectively.

2.4 | Modification of the BLP and BMCK methods for combining discrete distributions

The predictive density functions of the BLP and the BMCK are given by the equation 

(3) and (5), respectively. However, the forecasts of 1–4 week ahead wILI, which is a 

continuous measure of disease incidence, are represented using a binned probability format 

in submissions to the FluSight challenge. Here we describe a modification to BLP and BMCK

models to handle this discretized representation of the target variable.

Let F  denote a predictive CDF of a forecasting model, Y  be the outcome variable, and 

ℓi , ui : i = 1, …, I  be a collection of disjoint bins covering the set of possible outcomes 
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for Y , with ui = ℓi + 1 for i < I. An individual forecast of Y  consists of an assignment of 

probabilities to each of the I bins:

P i = Pr ℓi < Y ≤ ui (6)

= F ui − F ℓi . (7)

In order to estimate the parameters of the BMCK, we modify the log-likelihood function, 

which is the log of equation (5), for a single observation y that falls in bin j to be

log fBMCK y = log PBMCK, j
= log FBMCK uj − FBMCK ℓj

= log
k = 1

K
θkBαk, βk

m = 1

M
ωkmFm uj −

k = 1

K
θkBαk, βk

m = 1

M
ωkmFm ℓj

= log
k = 1

K
θkBαk, βk

m = 1

M
ωkm

i ≤ j
Pm, i −

k = 1

K
θkBαk, βk

m = 1

M
ωkm

i < j
Pm, i

where PBMCK, j is the probability assigned to bin j by the BMCK’s discretized predictive 

distribution, FBMCK y  is the continuous predictive CDF of the BMCK, Fm ui  and Fm ℓi  are 

the predictive CDFs of a individual model m, and Pm, i is the probability assigned to bin i by 

individual model m’s discretized predictive distribution.

Since the BLP is a special case of the BMCK where K = 1, the modified log-likelihood 

function of the BLP is the same as above with a single beta component term in the outer 

summation.

3 | APPLICATION IN SEASONAL INFLUENZA FORECASTING IN THE U.S.

We apply the combination methods introduced in Section 2 to prospective forecasts from 27 

individual forecasting models (Table S1, Supporting Information25) available in the FluSight 

Network repository26 to generate weekly ensemble forecasts of 1–4 week ahead wILI for the 

United States and the 10 Health and Human Services (HHS) regions from the 2016/2017 to 

2018/2019 influenza seasons.

3.1 | Forecast evaluation

We follow the FluSight Challenge guidelines27 by using the logarithmic score or log score 

which is defined as the logarithm of the predictive density or mass function evaluated at 

the observed data point. The log score is a proper scoring rule that assesses the sharpness 

and calibration of probabilistic forecasts simultaneously28. In the FluSight challenge where 

forecasts are represented in a binned probability format, the log score is defined as

LogS f, y* = log
ℓi

ui
f(y)dy

= log P i
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where y* is the observed value of the forecast target y and ℓi and ui are the pre-specified 

lower and upper bounds of bin i such that y* ∈ ℓi , ui .

We generate forecasts from each combination method for all combinations of week, region, 

target, and season, and calculate their log scores. Following the CDC scoring convention23, 

we truncate log scores to be no lower than −10. The benefit of this approach is that it enables 

us to average log scores for a method even when that method receives a log score of −∞
(assigning zero probability to an observed value) for any forecasts. However, this modified 

log score is formally no longer a proper score. Log scores are averaged across all forecast 

regions and weeks for each target and test season to get summary measures of accuracy for 

each method to compare their performance.

The calibration of a probabilistic forecast addresses the statistical consistency between the 

predictive distributions of forecasts and the observations. The concept of calibration allows 

us to assess whether a model produces reliable forecasts, i.e. whether an event that the model 

assigns a particular predicted probability really occurs that at that frequency in the long 

run. The forecast f is probabilistically calibrated if its probability integral transform (PIT) 

values are uniformly distributed on the unit interval29. The probability integral transform, 

zi = F y* , is the probability obtained from evaluating the predictive CDF of a model at the 

observed value, y*.

To assess the probabilistic calibration of the ensemble forecasts (i.e., the uniformity of the 

PIT values), we use the graphical tool called the probability plot, which plots the empirical 

CDF of the PIT values. Specifically, we compute the PIT values of all observations in 

the test seasons and plot their empirical CDFs by target and season. The empirical CDF 

curve should follow a 45-degree line bisecting the plot if the forecasts are probabilistically 

calibrated. In the case where deviations from uniformity are observed, the shape of 

empirical CDF curve of the PIT values suggests the causes behind the lack of probabilistic 

calibration30. For example, PIT values concentrating near 0 and 1 indicates that the observed 

values fall on the tails of the predictive distribution of the forecasts more frequently than 

expected, i.e., the probability plot shows the slope steeper than 1 near the PIT values of 

0 and 1, so that the predictive distributions were too narrow. To quantitatively measure 

the deviation of a PIT CDF curve from a standard uniform CDF, we compute the Cramer 

distance28,31, ∫−∞
∞ (F (x) − G(x))2dx, where F (x) is an empirical CDF of PIT values and G(x)

is a standard uniform CDF. The Cramer distance can be viewed as a summary measure 

of calibration, however, it lacks the diagnostic property of the probability plot. The lower 

a Cramer distance is, the less an empirical CDF of PIT values deviates from a standard 

uniform CDF overall.

3.2 | Parameter estimation

The test data set includes the 2016/2017, 2017/2018, and 2018/2019 influenza seasons. 

When generating ensemble forecasts for a test season, the training data set consists of all the 

influenza seasons preceding that test season, starting with the 2010/2011 season. Under this 

framework, a different number of training seasons is used for each test season.
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The parameters of each combination method are estimated simultaneously by maximizing 

the average log score, which is positively oriented (i.e., higher scores are better), via 

maximum likelihood estimation over a training data set. The parameters are chosen to be 

target-specific to allow for variations among targets. We update the parameter estimates for 

each test season, so there are 12 sets of parameters to be estimated for four targets and 

three test seasons. We modify the estimation approach for the BLP, EW-BLP, BMCK, and 

EW − BMCK as outlined in the Methods section in order to apply the combination methods to 

individual forecasts in a binned probability representation.

3.2.1 | Choice of K for finite beta mixture combination approaches—We use a 

leave-one-season-out cross validation approach to select the number of beta components, K, 

in the BMCK and EW − BMCK for each target-test season pair. Specifically, we train the BMCK

and EW − BMCK using K = 2 through 5 on each subset of data in the training data with one 

season left out and use those ensemble fits to generate forecasts for the left out influenza 

season. Log scores for all combination methods are calculated for all unique forecasts, then 

averaged across all weeks, regions, and validation seasons to obtain a single mean validation 

log score for each target and method. In order to take model complexity into account, 

we calculate mean validation log scores across all locations for each validation season in 

training seasons, compute a standard error for each target-test season pair, and select the 

smallest K for BMCK and EW − BMCK with mean validation log scores within 1 standard 

error of the best log score in a particular target-test season pair. As a result, models with best 

mean validation log scores are not necessarily selected if a more parsimonious model could 

achieve similar mean validation log scores.

Based on the mean validation log scores in Table 1, K = 2 is selected for the BMCK and 

EW − BMCK for all four targets and three seasons. The finite beta mixture combination 

methods with K = 2 had the best mean validation log scores in every instance other than 

the 2 week ahead target in the 2018/2019 season. Overall, using a higher number of beta 

components in the finite beta mixture approaches does not substantially improve mean 

out-of-sample log scores in our application. Thus, the finite beta mixture methods with the 

most parsimonious number of parameters are selected.

3.3 | Results

3.3.1 | Overall Summary—Based on mean out-of-sample log scores across all targets 

and seasons (Figure 3 panel (b)), the BMC2 is the most accurate method, followed by the 

BLP and LP. Across all three test seasons, the BMC2 outperformed the other five methods 

for 3 and 4 week ahead horizons, and performed as equally well as the BLP for the 2 

week ahead horizon (Figure 3 panel (a)). The BLP is the best performing method for the 1 

week ahead horizon. The BMC2 is also the best performing method for the 2017/2018 and 

2018/2019 season based on mean out-of-sample log scores across all four horizons, while 

the BLP is the best performing method for the 2016/2017 season. These results indicate that 

the BLP and BMC2 can consistently improve the accuracy of ensemble forecasts compared 

to the other commonly used methods included in this study despite season-to-season and 

target variations.
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Across all test seasons, the 1 week ahead forecasts from the BLP and BMC2 methods are 

more probabilistically calibrated than other methods based on the probability plots and their 

Cramer distances from the standard uniform CDF (Figure 5(a) and Figure 6(a)). However, 

the forecasts produced from all beta-transformed methods became less calibrated as forecast 

horizons increased. Across all targets, the LP and BLP methods produced most calibrated 

forecasts in the 2016/2017 and 2018/2019 seasons, followed by the BMC2 method. The 

LP is the most calibrated across all targets and and test seasons, which is due to its stable 

performance across all test seasons and in particular its substantially better calibration 

relative to the other methods in the 2017/2018 season.

3.3.2 | Comparison of combination methods’ accuracy—Across all targets and 

seasons, the BMC2 has the best mean out-of-sample log score of −3.02, though it only 

marginally outperformed the BLP and LP, which have mean out-of-sample log scores of 

−3.03 and −3.06, respectively (Figure 3(b)). Across all three test seasons, the BLP has the 

best mean out-of-sample log scores for the 1 week ahead horizon (Figure 3(a)). The BMC2, 

which is the most flexible method in this study, has the best mean out-of-sample log scores 

of −3.19 and −3.34 for 3 and 4 week ahead horizons, respectively. It also performed as well 

as the BLP, which also has the best mean out-of-sample log score of −2.95 for the 2 week 

ahead horizon. Across all four target horizons, the BLP is the most accurate method for the 

2016/2017 season, while the BMC2 is the most accurate for the 2017/2018 and 2018/2019 

season.

The observation-level log scores of the ensemble forecasts from the beta-transformed 

combination methods exhibit higher variation compared to those from the EW-LP and 

the LP for all targets and test seasons (Figure 4). Mean out-of-sample log scores of 1–4 

week ahead national-level forecasts in test seasons by epiweek in Figure 7(b) indicate that 

accuracy deteriorates near the time at which the peak incidence was observed, especially 

for the BLP and BMC2. These results are in alignment with the theoretical finding that the 

LP tends to produce overdispersed or wider forecasts, as evident by their wider prediction 

intervals compared to those of the BLP and BMC2 forecasts in Figure 7(a), resulting in less 

extreme log scores.

The performance of the BMC2 method, which is the method with the highest number of 

estimated parameters, was slightly less consistent in the test seasons compared to its superior 

performance across all targets and seasons in the training periods. Nonetheless, it was 

always among the top two methods in terms of out-of-sample log score across all targets 

and seasons (Figure 3). We also see notably higher variation in log scores across all methods 

for all targets in the 2017/2018 season, which was one of the most severe and longest flu 

seasons in the recent years32. Section 2 in the Supporting Information25 provides detailed 

results of mean out-of-sample log scores by location, target, test season.

3.3.3 | Comparison of combination methods’ calibration—The empirical CDF 

curves of PIT values from probabilistically calibrated forecasts should follow the CDF 

of a standard uniform distribution, that is, a diagonal line between 0 and 1. The more 

an empirical CDF curve of the PIT values deviates from the reference line, the more 

miscalibrated the forecasts are. To quantify the deviation from the CDF of a standard 
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uniform distribution, we computed the Cramer distances between the empirical CDF of PIT 

values and the CDF of a standard uniform distribution.

Overall, all combination methods produced forecasts that lack probabilistic calibration in the 

test period. The BLP and BMC2 methods are more probabilistically calibrated than other 

methods for the 1 week ahead horizon, as their empirical CDF curves are less deviated 

from the reference line (Figure 5(a)) and their Cramer distances are the lowest (Figure 6(a)). 

However, the forecasts produced from all beta-transformed methods became less calibrated 

as forecast horizons increased. Across 2 to 4 week ahead forecast horizons in the test period, 

the empirical CDF curves of the PIT values from the forecasts from the EW-BMC2 were the 

most miscalibrated among all beta-transformed methods as indicated by its Cramer distances 

being the highest.

Probability plots by season (Figure 5(b)) show that ensemble forecasts from all methods 

are relatively well-calibrated in the 2016/2017 season, while they are most miscalibrated in 

the 2017/2018 season. In the 2018/2019 season, the LP, BLP and BMC2 methods produced 

noticeably better calibrated forecasts compared to forecasts from the EW-BLP and EW-

BMC2. In the 2017/2018 season, the forecasts from all methods tended to too low, but the 

observed wILI were generally still captured in the upper tail of the predictions from the LP 

and EW-LP methods, whereas the beta-transformed combination methods under-predicted 

more systematically. This is illustrated for the national-level forecasts in Figure 7.

Recall that according to theory, the LP will produce ensemble forecasts with too wide 

predictive distributions when individual models are well-calibrated14. The results (Figure 

5) in our application during the training period are consistent with this theory. Specifically, 

the forecasts from the LP and EW-LP tended to be too wide, i.e., more observed values 

concentrated near the center of predictive distributions than expected for a well-calibrated 

model as indicated by the slopes of PIT CDF curves being higher than 1 for intermediate 

PIT values and lower than 1 near 0 and 1 (Figure 5).

Despite the under-prediction across horizons observed in both training and test periods, 

the beta-transformed combination methods’ probabilistic calibration was notably better in 

the training period, especially for 3 and 4 week ahead horizons (Figure 5(a) and Figure 

6(a)) and for the 2017/2018 season (Figure 5(b) and Figure 6(b)). The added flexibility 

afforded by these methods enables them to adjust for observed dynamics in the training 

seasons. Coupled with substantially larger observed disease incidence in the 2017/2018 

season compared to the training seasons (Figure 1), beta-transformed combination methods’ 

poor out-of-sample calibration was misaligned with its performance on the training period 

as a result, which also adversely affected the calibration performance aggregated by target 

across all test seasons.

The probability plots by target-season pairs (Figure S6, Supporting Information25) show 

similar calibration results as in Figure 5 —the empirical CDF curves of the PIT values of 

forecasts produced from the LP methods in the test seasons also appear miscalibrated in the 

lower tail. The calibration of all methods by target-season pairs are discussed in more details 

in Section 3 in Supporting Information25.
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3.3.4 | Comparison of accuracy and calibration between combination 
methods and their more regularized counterparts—Comparing performance of 

particular pairs of methods provide insights into how using more or less regularized methods 

affect forecasts’ performance. The LP method can be considered a regularized approach of 

the BLP method, as the calibration parameters, α and β, are regularized to one. The BLP can 

be deemed a regularized approach of BMC2, as the number of beta components (K) is fixed 

to one, resulting in an incrementally lower level of complexity. Likewise, the EW-LP and 

EW-BLP methods are also regularized versions of the EW-BLP and the EW-BMC2 methods, 

respectively.

As measured by log scores, methods that used beta calibration were generally better than 

methods that did not, but adding more flexibility for calibration generally did not lead to 

additional gains in performance (Figure 3). The EW-BLP method outperformed the EW-LP 

method for all four targets and all three test seasons, and the BLP method outperformed 

the LP method for three out of four targets, especially the one and two week ahead targets, 

and two out of three test seasons. However, the EW-BLP and EW-BMC2 methods had 

similar mean log scores for all targets and test seasons, as did the BLP and BMC2 methods. 

Comparing the calibration performance of the BLP and BMC2 methods to their regularized 

counterparts, it was noted that more regularized methods had a less severe degradation of 

calibration performance moving from the training period to the test period, especially when 

calibration results were aggregated across all seasons and in the 2017/2018 season when 

calibration results were aggregated across all targets (Figure 5 and Figure 6). Comparing 

EW-LP to EW-BLP and EW-BLP to EW-BMC2 shows a similar pattern of calibration 

performance.

Similarly, the methods with equal individual weights (EW-LP, EW-BLP, EW-BMC2) can 

also be viewed regularized versions of the corresponding methods with optimally weighted 

individual models, as the individual models’ weights are regularized to 1
M . The equally 

weighted variations of the combination methods (EW-LP, EW-BLP, and EW-BMC2), though 

more parsimonious, had sub-optimal forecast accuracy compared to their counterparts that 

assigned weights to the individual models in this application. The EW-LP was the worst 

overall method across all targets and seasons, and all equally weighted variations had worse 

mean out-of-sample log scores compared to their more complex counterparts (Figure 3). 

Additionally, the equally weighted ensembles generally had poorer calibration than the 

corresponding weighted variations in both the training period and the test period, as their 

Cramer distances are notably higher than those of the BLP and BMC2 in the test period 

(Figure 5 and Figure 6).

4 | DISCUSSION

As demonstrated in the forecasting literature, in many settings ensemble forecasts have 

consistent superior performance and give decision makers the ability to unify the strengths 

and diversity of individual models into one forecast. These particular advantages are of great 

importance in practice for infectious disease forecasting6,33,9,34,8,12. This work aims to offer 

insight into forecast accuracy and calibration of parametric combination methods in which 
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calibration and individual model weight estimation happen simultaneously in the application 

of seasonal influenza forecasting in the U.S.

We applied the linear pool, beta-transformed linear pool, and the finite beta mixture 

combination method to available forecasts in the FluSight challenge to produce ensemble 

forecasts for seasonal influenza in the U.S. retrospectively for three test seasons and 

compared their performance. Our results showed that two of the combination methods 

included in this study, the BLP and BMC2, offered consistently superior forecast accuracy 

relative to the LP and EW-LP. Either the BLP or the BMC2 or both delivered better mean 

log scores across the test seasons compared to the other methods for all targets and across 

all targets for all seasons. Despite using different methods to create ensemble forecasts, 

our findings are in agreement with the findings in Rumack, Tibshirani and Rosenfeld18 

that combination methods that take into account forecast calibration improve accuracy of 

seasonal influenza ensemble forecasts in the U.S.

The BMC2 uses twice as many parameters as the BLP, but only marginally outperformed 

it in two out of four targets and five out of twelve target-season pairs. Considering the 

large number of individual models in the FluSight challenge, the BLP may be more easily 

applicable in practice compared to the BMC2 as it has half as many individual model 

weights and beta parameters to estimate. Although the LP under-performed relative to the 

BLP and BMC2 for most targets and seasons, the differences in mean log scores were 

typically small. It was also observed that the BLP and BMC2 methods’ poor observation-

level mean log scores are less frequent, but more extreme than the LP’s, leading to better 

aggregated mean log scores. More parsimonious combination methods with fixed, equally 

weighted individual model weights, namely the EW-LP, EW-BLP and EW-BMC2, appear to 

not be flexible enough to deliver superior performance compared to the other methods in this 

study. While this is the case for this application, combination methods using equal weights 

with or without the beta transformation could be useful in other applications where it might 

be difficult to estimate individual model weights when available models change over time or 

training data are limited12.

The results on the probabilistic calibration of the ensemble forecasts measured by the 

uniformity of the PIT values are less straightforward. The results for the LP and EW-LP 

forecasts indicate that they had too wide predictive distributions across all targets. Despite 

the beta-transformed combination methods’ success at correcting the overdispersion of the 

ensemble forecasts from the LP and EW-LP, their forecasts exhibited a pattern of systematic 

under-prediction. This under-prediction is relatively more pronounced at longer forecast 

horizons, especially in the 2017/2018 influenza season. In the 2017/2018 season, which was 

a large influenza season in the U.S.32, the ensemble forecasts from all combination methods 

under-predicted to some extent. However, the BLP and BMC2 methods had particularly poor 

calibration that season, indicating that they may have adapted to the dynamics of the training 

seasons, which were smaller in scale. Note that an overdispersed forecaster, such as the LP 

and EW-LP, has the advantage of being more likely to capture an extreme season, though it 

may not be optimal overall based on proper scores. These more conservative methods may 

be desirable in applications in which stakeholders want to avoid missing a large season at the 

expense of having too wide forecasts.
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Additionally, the parameters of the the finite beta mixture combination methods were 

estimated by maximum likelihood, which is not equivalent to a measure of probabilistic 

calibration. If probabilistic calibration is of critical importance for the application at hand, 

other approaches such as post-hoc calibration techniques that directly target a calibrated 

forecast distribution may be appropriate.

Exploring different approaches to select training periods can be useful. For instance, 

Baran and Lerch20 use rolling training periods in the application of a similar set of 

combination methods to wind speed and precipitation forecasting and Rumack, Tibshirani 

and Rosenfeld18 constructs a training period that takes into account seasonality of epidemic 

forecasting. In addition, combination methods that require the joint estimation of all 

parameters, including the parameters in the individual models, may be considered in a 

setting where the underlying model structure of individual models are known. An example 

of one of these methods is the mixture EMOS model35. Since the FluSight challenge 

provides forecasts only, in this work we selected combination methods that do not require 

reproduction of forecasts from individual models.

For combining forecasts in outbreak settings, the beta-transformed linear pool (BLP) is 

a promising alternative to standard linear pooling (LP) methods. Compared with LP, the 

BLP has only two additional parameters, α and β, and the simple modification of the log 

likelihood function makes the BLP applicable to combining forecasts in a binned probability 

format. The BMC2 may add value in instances where the BLP is not flexible enough, though 

we only see marginal improvement in the mean out-of-sample log scores in our application.

As infectious disease forecasting has come to the forefront of the public health effort in 

formulating well-informed policies in response to outbreaks, it is critical to gain insight 

on model combination approaches in order to combine individual models’ strengths and 

to produce accurate ensemble forecasts. This study demonstrates an effort to improve our 

understanding of how forecast combination methods compare in a setting of an infectious 

disease with well-established surveillance data pipeline like seasonal influenza.
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Figure 1. 
Influenza-like illness weighted by state populations (wILI) data at the national level (left 

panel) and four HHS regions (right panel) from the 2010/2011 to 2018/2019 influenza 

season published by the U.S. Outpatient Influenza-like Illness Surveillance Network 

(ILINet). The 2016/2017, 2017/2018, and 2018/2019 seasons, which are the test seasons, 

are represented in solid lines. A high level of weighted ILI was observed at a national level 

and in three selected HHS regions in the 2017/2018 season and in HHS region 8 in the 

2018/2019 season.
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Figure 2. 
Illustrative example of the BLP’s beta transformation of FLP(x). For demonstration purposes, 

the individual model weights of the LP and BLP are fixed to be the same. We start with 

a predictive density from a linear pool, fLP(x) in panel (a), and the corresponding CDF 

FLP(x) in panel (b). Step (1) shows the beta transformation of z = FLP(x) in panel (b) through 

FBLP(z) = Bα, β(z) with α = 2 and β = 3 in panel (c). Step (2) shows the BLP’s predictive CDF 

FBLP(x), panel (d), as a result of the beta transformation in the first step. Panel (d) shows that 

the beta-transformed CDF concentrates probability closer to the median and its predictive 

density, panel (e), is narrower compared to that of the LP in panel (a). Other choices of 

the parameters for the beta transform could lead to a still narrower distribution after the 

transformation, a wider distribution, or an asymmetric adjustment that acts differently in the 

left and right tails.
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Figure 3. 
Mean training and out-of-sample log scores of ensemble forecasts of wILI in the U.S. 

Higher log scores (lower ranks) indicate better accuracy. Panel (a) shows mean training and 

out-of-sample log scores by target. The BLP and BMC2 are two best performing methods 

for three out of four forecast horizons based on out-of-sample log scores. Panel (b) shows 

mean training and out-of-sample log scores by season and across all seasons. The BLP and 

BMC2 are two best performing methods for two out of three test seasons.
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Figure 4. 
Boxplots of out-of-sample, observation-level log scores of ensemble forecasts of wILI in the 

U.S. by target and season. Each black cross marker represents a mean out-of-sample log 

score for a particular target and season. The observation-level log scores of forecasts from 

the beta-transformed combination methods are highly variable compared to those from the 

EW-LP and the LP for all four targets and three test seasons.
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Figure 5. 
Probability plots show the empirical CDF curves of PIT values of ensemble forecasts in 

the training and test periods by target and season. The black diagonal dashed line is the 

CDF of a standard uniform distribution used as the reference line for assessing probabilistic 

calibration. The more the empirical CDF curves of PIT values are deviated from uniformity, 

the less calibrated forecasts are. Panel (a) shows probability plots of ensemble forecasts 

by target. In the test period, the BLP and BMC2 methods are more calibrated than other 

methods for the 1 week ahead horizon, while the LP method are more calibrated at 
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farther forecast horizons. Panel (b) shows probability plots of ensemble forecasts by season. 

Forecasts from all methods are least calibrated in the 2017/2018 season. The LP, BLP and 

BMC2 methods achieve a similar degree of calibration in the 2016/2017 and 2018/2019 

season. In both panels, all beta-transformed combination methods display varying degrees of 

under-prediction and the EW-LP and LP methods are often miscalibrated in the lower tail of 

the predictions.
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Figure 6. 
Cramer distances between empirical CDF curves of PIT values and the CDF of a standard 

uniform distribution. The higher the Cramer distance is, the more miscalibrated the 

forecasts produced from the corresponding combination method are. Panel (a) shows Cramer 

distances by target. The LP method has the lowest Cramer distances for three out of four 

targets in the test period. Panel (b) shows Cramer distances by season and across all targets 

and seasons. The LP method has the lowest Cramer distances in two out of three seasons, 

while the BLP has the lowest Cramer distance in the 2018/2019 season.
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Figure 7. 
Panel (a) shows point estimates (medians) with 90% prediction intervals from 1–4 week 

ahead probabilistic forecasts of national-level wILI generated from the LP, BLP, and BMC2 

with observed wILI in black solid lines. The LP has wider prediction intervals than the other 

two methods. Panel (b) shows mean out-of-sample log scores for national-level forecasts, 

averaging across all targets by test season with method-specific seasonal means in dashed 

lines. Mean log scores worsen near the time when the peak incidence occurred relative to 

the means. The BLP’s and BMC2’s seasonal means are similar in the first two test seasons. 
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Panel (c) shows the probability plots of national-level forecasts and Cramer distances by 

test season (from left to right, 2016/2017, 2017/2018, and 2018/2019). All methods’ Cramer 

distances are similar in the first and last test seasons. In the 2017/2018 season, the LP is 

better calibrated in the upper tail where the BLP and BMC2 substantially under-predicted.
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Table 1

Mean validation log scores of BMCK and EW − BMCK for all target-season pairs. The selection of the number 

of beta components (K) outlined in 3.2.1 takes both model complexity and mean log scores into account. 

Scores shown in bold and in italics are the selected methods and methods with best mean validation log scores, 

respectively.

2016/2017

Week ahead BMC2 BMC3 BMC4 BMC5 EW-BMc2 EW-BMC3 EW-BMC4 EW-BMC5

1 −2.49 −2.50 −2.50 −2.50 −2.50 −2.50 −2.50 −2.50

2 −2.74 −2.75 −2.75 −2.76 −2.76 −2.76 −2.76 −2.76

3 −2.95 −2.95 −2.95 −2.97 −2.92 −2.92 −2.92 −2.92

4 −3.08 −3.09 −3.10 −3.11 −3.03 −3.03 −3.04 −3.04

2017/2018

1 −2.49 −2.50 −2.50 −2.51 −2.51 −2.51 −2.51 −2.52

2 −2.75 −2.75 −2.76 −2.77 −2.78 −2.78 −2.78 −2.78

3 −2.96 −2.96 −2.97 −2.98 −2.94 −2.95 −2.95 −2.95

4 −3.09 −3.09 −3.10 −3.10 −3.06 −3.06 −3.06 −3.06

2018/2019

1 −2.51 −2.52 −2.52 −2.53 −2.55 −2.55 −2.55 −2.55

2 −2.80 −2.79 −2.81 −2.80 −2.85 −2.84 −2.85 −2.85

3 −2.99 −3.00 −3.00 −3.01 −3.03 −3.03 −3.03 −3.03

4 −3.13 −3.14 −3.13 −3.14 −3.15 −3.15 −3.15 −3.15
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